最新报道
英集芯ip6808_ua无线充电发射控制器是一款15wqi无..
充电器方案芯片IP6510由聚泉鑫代理英集芯出品,是..
车载充电器方案qc3.0快充芯片IP6538是一款集成同步..
聚泉鑫科技近半年来已为多个充电器工厂提供100W氮..
聚泉鑫科技提供一款基于英集芯IP5358芯片设计的18W..
热销产品
5w无线充电发射器方案st意法半导体ST公司的STWBC是一款用于无线电池充电器发送器的..
10W无线充电单线圈发射方案NT1010X01采用国际领先、高性价比的芯片器件及方案,实..
2.1A充电2.4A放电高集成度移动电源SOC简介IP5306是一款集成升压转换器、锂电池充电..
IP5318支持兼容三大快充技术IP5318:I-Q3.0/2.0、I-P、TYPE-C快充IC(一)快充标准全..
TDA7388汽车专用4声道AB类音频功率放大器 TDA7388/TDA7580是ST公司(意法半导体..
氮化镓USB PD充电器新闻
从大而笨重到小而轻便,AC-DC电源适配器也在“改朝换代”
[ 发布日期:2020-05-27 09:53:42 | 浏览:260次 ]
在使用笔记本电脑和智能手机时,用户都希望充电越快越好,充电电源越小越好,因此从设备厂商到电源芯片厂商都在极力向着这个目标奋斗。但是电源适配器在小型化的过程中也面临很多挑战,比如:每个充电器在满载、半载、轻载以及待机时都希望达到高能效,我们针对轻载如何提高能效?随着元器件数量增加,密度变高,排列就会很紧凑,容易产生干扰,怎样同时做到高性能、EMI 低、元器件数量少? 除此之外,还要能涵盖从手机到笔记本尽可能广泛的充电应用,更重要的是性价比要高。
 
为了帮助用户解决这些问题,安森美推出了自适应有源钳位反激控制器 NCP1568 和 700V 半桥驱动器 NCP51530,在拓扑结构、性能参数等方面进行了调整。据安森美半导体模拟方案部交流 - 直流电源管理高级市场推广经理蒋家亮介绍,“NCP1568 ACF 控制器具备先进的功能和灵活的操作,有助于提供卓越的能效,同时使用了 SJ FET 或 GaN FET,且只需少量外部器件就可实现高密度的设计。NCP51530 驱动器是一款高速、高性能、强固的电源方案,包括针对汽车应用的 AEC Q-100 认证选择。”

NCP1568 USB PD 65W 超高密度演示板
NCP1568 USB PD 65W 超高密度演示板
 
有源钳位反激拓扑实现高能效、低 EMI
在传统的反激拓扑架构中,开关包含一个变压器和一个 Mosfet。在开关时会产生振铃,它会产生高频的 EMI,使得变压器漏电,耗散在缓冲器或者钳位电路中,难以在生产中控制和zx化。对于 Mosfet 损耗,应该选择 Rd(on)FET 减少高压损耗,在 90V 是降低能效时可能需要更好的散热器。如果不想产生 EMI,需要周边的振铃电路来吸收,吸收掉就等于损耗掉,因此跑高频越多损耗越多,因此传统的反激拓扑结构不能跑到高频。
 
对比用有源钳位反激架构,在上面多加一个 Mosfet 和一个电容,在同样有吸收能量的地方,当 Mosfet 关时,全部能量会存储在电容里,有需要时再重新利用这部分能量。只要把 Mosfet 的开关电压设置为零伏,下边的 Mosfet 就等于是零伏的电压开关,等于没有损耗。当 Mosfet 关掉时,可以把 EMI 损耗的能量全部重新利用,传递到二极管,等于整个电源转换过程不会有损失,这样既可以做高频,也可以实现低 EMI,同时还会保持高能效,这就是有源钳位反激架构的优势。
 
极大缩小电源适配器体积
NCP1568 具有三种控制模式:第一,控制模式具有支适应零电压开关(ZVS)频率调制,支持可变的 Vout,集成自适应死区时间,可以进行峰值电流模式控制;第二,非连续导通模式及轻载模式,可选过渡至 DCM 模式,频率返走,zx 31kHz 的频率钳位,静音跳跃消除可闻噪声,待机功耗小于 30mW;第三,高压(HV)启动,700V HV 启动 JFET,集成高压开关节点检测以优化 ZVS,内置欠压和 X2 放电。
 
关于自适应零电压开关频率可调节这一特点,蒋家亮解释,“对于 USB Type-C 和 USB PD 应用,可以充手机的 5V,也可以充笔记本的 20V。另外,根据功率的不同,负载点的开关会做优化,减少开关导通损耗;自适应死区的时间也是确保每个周期开关状态最佳。IC 需要将周期调到轻载、待机部分,以前反击做到非常低的待机,可能有声音,可以多加静音的方式。当一个频率返走的时候,我们可以把频率从 29K 马上调到 800Hz,中间可以从 29K 变成 20K 或者十几 K,这不好做,所以就是把中间的频率跳过。如何从 29K 开关频率马上跑到 800Hz?1K、2K、3K、5K、10K 这些人比较容易听到的频率全部跳过,马上跑到 800Hz,也可以做到很低音的效果,这就是静音跳跃消除可闻躁声的效果。”
 
iPhone8 和电源适配器比较图
iPhone8 和电源适配器比较图
 
如图所示,采用 NCP1568 USB PD 65W 超高密度演示板的电源适配器相当于 iPhone8 手机的 1/3。演示板采用了有源钳位反激及 DCM 工作模式,满载能效在 120V 时可以达到 94%,在 230V 时可以达到 94.6%,采用的是超结(SJ)FET,蒋家亮表示,“在 94%的效率下基本不需要散热器,如果采用氮化镓材料,满载能效可能会达到 95%多点。功率密度跟损耗永远都会有一个平衡点,在满载功率 94%时不用散热片,假如用同样的板子跑高频,变压器更小,板更小,大概相当于现在的 2/3,同样达到 94%的能效,发热机会大。因为损耗是固定的,面积小了,发热提高了,所以要额外多加一些铜片散热,电压可靠性会高。”
 
氮化镓要选对拓扑结构才能发挥优势
目前氮化镓价格较贵,所以在高密度的部分,如果能够用普通的超结 Mosfet,做到高密度就是首选的方案。同样在不同的负载上,在平均能效或者 10%轻载的时候,基本上会达到 90%或者 94%的能效。未来氮化镓功率管是不是也适用于有源钳位拓扑呢?蒋家亮表示,“这取决于客户的目标,有的客户觉得用超结就满足要求,有些客户追求更高密度,希望使用氮化镓导更高频,我们的产品可以跑高频配氮化镓。如果用户要做设备降损,在上百 K 的位置也能高能效。”
 
“如果拓扑结构没办法跑高频,用氮化镓跑高频也是浪费,所以用户选择时一定要让氮化镓配合适的拓扑,比如说有源钳位或者 LLC 零电压切换的拓扑才可以跑高频。我们目前的 USB Type-C PD 电源适配器方案,不是zx,但是可以做到更小。因为现在的频率是 300K,假如到 500K 的高频率,变压器会更小,再配合氮化镓,功率密度一定会更高,适配器尺寸会更小。” 蒋家亮补充。
】 【打印】【繁体】 【关闭】 【返回顶部

昂宝全系列OB2540 电源管理驱

【LED背光和驱动电路】隔离高P

【LED电源驱动IC 】OB2358AP集

【LED电源驱动IC】SA5888̳

【LED电源驱动IC】OB2535CPA全

移动电源管理芯片|电源管理ic|电子烟充电ic方案|锂电池管理芯片|电子烟充电管理ic|锂电池充电管理ic|移动电源管理ic方案|移动电源三合一ic方案|移动电源充电管理方案