最新报道
充电器方案芯片IP6510由聚泉鑫代理英集芯出品,是..
车载充电器方案qc3.0快充芯片IP6538是一款集成同步..
聚泉鑫科技近半年来已为多个充电器工厂提供100W氮..
聚泉鑫科技提供一款基于英集芯IP5358芯片设计的18W..
65w氮化镓和普通65w有什么区别? (1)外观体积:..
热销产品
5w无线充电发射器方案st意法半导体ST公司的STWBC是一款用于无线电池充电器发送器的..
10W无线充电单线圈发射方案NT1010X01采用国际领先、高性价比的芯片器件及方案,实..
2.1A充电2.4A放电高集成度移动电源SOC简介IP5306是一款集成升压转换器、锂电池充电..
IP5318支持兼容三大快充技术IP5318:I-Q3.0/2.0、I-P、TYPE-C快充IC(一)快充标准全..
TDA7388汽车专用4声道AB类音频功率放大器 TDA7388/TDA7580是ST公司(意法半导体..
氮化镓USB PD充电器新闻
氮化镓GaN是否会成为电子产品下一个市场追逐的风口?
[ 发布日期:2020-05-07 09:55:17 | 浏览:364次 ]

  随着消费电子产品、电动车、家用电器等产品更新换代,产品的性能也越来越受重视,尤其是在功率设计方面。如何提升电源转换能效,提高功率密度水平,延长电池续航时间,成为了新一代电子产品面临的zd挑战。

  在这样的背景下,一种新型的功率半导体——氮化镓(GaN)的出现,或许会成为未来电子产业的“香饽饽”。

  蛰伏20年的氮化镓GaN,却被雷布斯“一不小心”带火

   今年2月结束的小米10发布会上,和小米10一同火起来的,还有小米创始人雷军着重介绍额65W小米氮化镓GaN充电器。雷军夸其为“实在太方便了!”新品火起来的同时,还引起投资人对于第三代半导体的广泛关注。

  了解GaN之前,首先我们要弄清楚关于半导体材料的一些知识。半导体材料发展到现在已经进入了第三代。

  第一代半导体材料主要是指硅(Si)、锗(Ge)等元素的材料,常用在信息技术中的分立器件和集成电路中,电脑、手机、电视、航空航天、各类军事工程等产业中都得到了极为广泛的应用。

  第二代半导体材料主要是指化合物半导体材料,如**化镓(GaAs)、锑化铟(InSb);三元化合物半导体,如GaAsAl、GaAsP;还有一些固溶体半导体,如Ge-Si、GaAs-GaP;玻璃半导体(又称非晶态半导体),如非晶硅、玻璃态氧化物半导体;以及有机半导体,如酞菁、酞菁铜、聚丙烯**等。主要用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料。

  第三代半导体材料主要以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带半导体材料。在应用方面,根据第三代半导体的发展情况,其主要应用为半导体照明、电力电子器件、激光器和探测器、以及其他4个领域。在本文中重点介绍的GaN,并不存在于自然界,只能在实验室中制成。

  在1998年,美国研制出GaN晶体管,资料显示,GaN在室温下带隙为3.49eV(电子伏特)。一般来说,带隙就是指禁带宽度,是半导体材料的一个重要特征参量,其大小主要决定于半导体的能带结构。

  若禁带宽度Eg< 2.3eV,则称为窄禁带半导体,如Ge、Si、GaAs以及InP;若禁带宽度Eg>2.3eV则称为宽禁带半导体,如SiC、GaN、HSiC、AlN以及ALGaN等。

  由于宽禁带半导体材料具有禁带宽度大、击穿电场强度高、饱和电子漂移速度高、热导率大、介电常数小、抗辐射能力强以及良好的化学稳定性等特点,非常适合于制作抗辐射、高频、大功率和高密度集成的电子器件。

  以GaN为例,熔点高达1700℃。有人曾做过实验,在一般高温情况下,GaN不会发生分解反应,只有将其放置于氮气或氦气中且温度超过1000℃时GaN才会慢慢挥发,证明GaN可以在较高的温度下保持其稳定性。这也是为什么GaN能被广泛运用在大功率半导体中的原因。

  GaN产业链及应用前景

  与SiC产业链类似,GaN产业链可依次分为GaN衬底→GaN外延→器件设计→器件制造。从国内外GaN产业发展来看,美国、日本成为GaN产业发展的佼佼者,中国企业入局者则为数不多。

  

氮化镓GaN产业链及应用前景

 

  (资料源自中泰证券研究所)

  快充产品领域:GaN材料应用范围广泛,最为人熟知的就是在快充产品领域。最初快充出现的时候还并不被大伙所看好,总感觉这么短时间内充满一块电池,担心电池爆炸。随着快充逐渐升级为超级快充,充电时间越来越短,对于电池安全的隐忧虽然没有彻底放下,但人们也越来越愿意接受。

  

新型的GaN快充与传统快充相比,由于GaN的材料特性能提供更高的能量转化效率,降低了功耗,减小了充电时的发热问题

 

  (资料源自OFweek、东吴证券研究所)

  新型的GaN快充与传统快充相比,由于GaN的材料特性能提供更高的能量转化效率,降低了功耗,减小了充电时的发热问题;GaN充电器拥有更大的功率密度,能够实现更快的充电速度;此外,GaN充电器功率器件的开关频率显著高于传统快充中的Si功率器件,因此可以实现体积更小的充电器产品设计。

  5G射频领域:随着5G技术的爆发,相关产业对射频功率、功耗的要求进一步提升,GaN将逐渐取代Si材料。在相控阵雷达、电子对抗战、精确制导等军事化场景中,GaN的运用也越来越广泛。

  市场研究和战略咨询公司Yole曾经表示,2018年GaN射频器件市场规模达到4.57亿美元,未来5年复合增长率超过23%。在整个射频应用市场,GaN器件的市场份额将逐渐提高。长期来看,在宏基站和回传领域,凭借高频高功率的性能优势,GaN将逐渐取代LDMOS和GaAs从而占据主导位。

  电动汽车、光伏等功率半导体领域:目前电动汽车、光伏、智能电网等领域使用的IGBT是硅基材料,如果未来氮化镓技术取得突破,从而渗透进IGBT半导体领域,那么将进一步打开氮化镓市场的天花板。

  照明领域:半导体照明是目前国内外非常受人瞩目的一种新型的高效、节能和环保光源,它将取代大部分传统光源,又被称为21世纪的能源革命.GaN能和NIn、NAl相互掺杂改变III族元素的比例,从而能使其发光波长覆盖从红光到紫外光的范围,由此达到更高效率、高亮度的光源方面的应用。

  还存在哪些缺点?

  虽然GaN相比于Si等材料更节能、更快,具备更好的恢复特性,但是仍然谈不上彻底取代。由于若干原因,GaN并不常用于晶体管中,因为GaN器件通常是耗尽型器件,当栅极 - 源极电压为零时它们会产生导通,这是一个问题。

  其次,GaN器件极性太大,难以通过高掺杂来获得较好的金属-半导体的欧姆接触,这是GaN器件制造中的一个难题,现在最好的解决办法就是采用异质结,首先让禁带宽度逐渐过渡到较小一些,然后再采用高掺杂来实现欧姆接触,但这种工艺很复杂。

  小结

  欧美等国家正在持续加大第三代半导体领域研发支持力度,以GaN、SiC为首的第三代半导体材料被广泛应用,是半导体以及下游电力电子、通讯等行业新一轮变革的突破口。

  近年来,国内第三代半导体产业稳步发展,但在材料指标、器件性能等方面与国外先进水平仍存在一定差距,第三代半导体产业本土化、高端化的需求依然紧迫。

】 【打印】【繁体】 【关闭】 【返回顶部

昂宝全系列OB2540 电源管理驱

【LED背光和驱动电路】隔离高P

【LED电源驱动IC 】OB2358AP集

【LED电源驱动IC】SA5888̳

【LED电源驱动IC】OB2535CPA全

移动电源管理芯片|电源管理ic|电子烟充电ic方案|锂电池管理芯片|电子烟充电管理ic|锂电池充电管理ic|移动电源管理ic方案|移动电源三合一ic方案|移动电源充电管理方案